(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(n__filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(n__s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
s(X) → n__s(X)
activate(n__filter(X1, X2, X3)) → filter(activate(X1), activate(X2), activate(X3))
activate(n__sieve(X)) → sieve(activate(X))
activate(n__nats(X)) → nats(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
activate(n__filter(n__nats(X44182_4), X2, X3)) →+ filter(cons(activate(X44182_4), n__nats(n__s(activate(X44182_4)))), activate(X2), activate(X3))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [X44182_4 / n__filter(n__nats(X44182_4), X2, X3)].
The result substitution is [ ].
The rewrite sequence
activate(n__filter(n__nats(X44182_4), X2, X3)) →+ filter(cons(activate(X44182_4), n__nats(n__s(activate(X44182_4)))), activate(X2), activate(X3))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,1,0,0].
The pumping substitution is [X44182_4 / n__filter(n__nats(X44182_4), X2, X3)].
The result substitution is [ ].
(2) BOUNDS(2^n, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
filter(cons(X, Y), 0', M) → cons(0', n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0', Y)) → cons(0', n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(n__filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(n__s(N)))
zprimes → sieve(nats(s(s(0'))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
s(X) → n__s(X)
activate(n__filter(X1, X2, X3)) → filter(activate(X1), activate(X2), activate(X3))
activate(n__sieve(X)) → sieve(activate(X))
activate(n__nats(X)) → nats(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
filter(cons(X, Y), 0', M) → cons(0', n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0', Y)) → cons(0', n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(n__filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(n__s(N)))
zprimes → sieve(nats(s(s(0'))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
s(X) → n__s(X)
activate(n__filter(X1, X2, X3)) → filter(activate(X1), activate(X2), activate(X3))
activate(n__sieve(X)) → sieve(activate(X))
activate(n__nats(X)) → nats(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Types:
filter :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
cons :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
0' :: cons:0':n__filter:n__sieve:n__s:n__nats
n__filter :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
activate :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
s :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
sieve :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
n__sieve :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
nats :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
n__nats :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
n__s :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
zprimes :: cons:0':n__filter:n__sieve:n__s:n__nats
hole_cons:0':n__filter:n__sieve:n__s:n__nats1_0 :: cons:0':n__filter:n__sieve:n__s:n__nats
gen_cons:0':n__filter:n__sieve:n__s:n__nats2_0 :: Nat → cons:0':n__filter:n__sieve:n__s:n__nats
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
activate,
sieveThey will be analysed ascendingly in the following order:
activate = sieve
(8) Obligation:
TRS:
Rules:
filter(
cons(
X,
Y),
0',
M) →
cons(
0',
n__filter(
activate(
Y),
M,
M))
filter(
cons(
X,
Y),
s(
N),
M) →
cons(
X,
n__filter(
activate(
Y),
N,
M))
sieve(
cons(
0',
Y)) →
cons(
0',
n__sieve(
activate(
Y)))
sieve(
cons(
s(
N),
Y)) →
cons(
s(
N),
n__sieve(
n__filter(
activate(
Y),
N,
N)))
nats(
N) →
cons(
N,
n__nats(
n__s(
N)))
zprimes →
sieve(
nats(
s(
s(
0'))))
filter(
X1,
X2,
X3) →
n__filter(
X1,
X2,
X3)
sieve(
X) →
n__sieve(
X)
nats(
X) →
n__nats(
X)
s(
X) →
n__s(
X)
activate(
n__filter(
X1,
X2,
X3)) →
filter(
activate(
X1),
activate(
X2),
activate(
X3))
activate(
n__sieve(
X)) →
sieve(
activate(
X))
activate(
n__nats(
X)) →
nats(
activate(
X))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
X) →
XTypes:
filter :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
cons :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
0' :: cons:0':n__filter:n__sieve:n__s:n__nats
n__filter :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
activate :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
s :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
sieve :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
n__sieve :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
nats :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
n__nats :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
n__s :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
zprimes :: cons:0':n__filter:n__sieve:n__s:n__nats
hole_cons:0':n__filter:n__sieve:n__s:n__nats1_0 :: cons:0':n__filter:n__sieve:n__s:n__nats
gen_cons:0':n__filter:n__sieve:n__s:n__nats2_0 :: Nat → cons:0':n__filter:n__sieve:n__s:n__nats
Generator Equations:
gen_cons:0':n__filter:n__sieve:n__s:n__nats2_0(0) ⇔ 0'
gen_cons:0':n__filter:n__sieve:n__s:n__nats2_0(+(x, 1)) ⇔ cons(0', gen_cons:0':n__filter:n__sieve:n__s:n__nats2_0(x))
The following defined symbols remain to be analysed:
sieve, activate
They will be analysed ascendingly in the following order:
activate = sieve
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol sieve.
(10) Obligation:
TRS:
Rules:
filter(
cons(
X,
Y),
0',
M) →
cons(
0',
n__filter(
activate(
Y),
M,
M))
filter(
cons(
X,
Y),
s(
N),
M) →
cons(
X,
n__filter(
activate(
Y),
N,
M))
sieve(
cons(
0',
Y)) →
cons(
0',
n__sieve(
activate(
Y)))
sieve(
cons(
s(
N),
Y)) →
cons(
s(
N),
n__sieve(
n__filter(
activate(
Y),
N,
N)))
nats(
N) →
cons(
N,
n__nats(
n__s(
N)))
zprimes →
sieve(
nats(
s(
s(
0'))))
filter(
X1,
X2,
X3) →
n__filter(
X1,
X2,
X3)
sieve(
X) →
n__sieve(
X)
nats(
X) →
n__nats(
X)
s(
X) →
n__s(
X)
activate(
n__filter(
X1,
X2,
X3)) →
filter(
activate(
X1),
activate(
X2),
activate(
X3))
activate(
n__sieve(
X)) →
sieve(
activate(
X))
activate(
n__nats(
X)) →
nats(
activate(
X))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
X) →
XTypes:
filter :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
cons :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
0' :: cons:0':n__filter:n__sieve:n__s:n__nats
n__filter :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
activate :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
s :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
sieve :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
n__sieve :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
nats :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
n__nats :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
n__s :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
zprimes :: cons:0':n__filter:n__sieve:n__s:n__nats
hole_cons:0':n__filter:n__sieve:n__s:n__nats1_0 :: cons:0':n__filter:n__sieve:n__s:n__nats
gen_cons:0':n__filter:n__sieve:n__s:n__nats2_0 :: Nat → cons:0':n__filter:n__sieve:n__s:n__nats
Generator Equations:
gen_cons:0':n__filter:n__sieve:n__s:n__nats2_0(0) ⇔ 0'
gen_cons:0':n__filter:n__sieve:n__s:n__nats2_0(+(x, 1)) ⇔ cons(0', gen_cons:0':n__filter:n__sieve:n__s:n__nats2_0(x))
The following defined symbols remain to be analysed:
activate
They will be analysed ascendingly in the following order:
activate = sieve
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol activate.
(12) Obligation:
TRS:
Rules:
filter(
cons(
X,
Y),
0',
M) →
cons(
0',
n__filter(
activate(
Y),
M,
M))
filter(
cons(
X,
Y),
s(
N),
M) →
cons(
X,
n__filter(
activate(
Y),
N,
M))
sieve(
cons(
0',
Y)) →
cons(
0',
n__sieve(
activate(
Y)))
sieve(
cons(
s(
N),
Y)) →
cons(
s(
N),
n__sieve(
n__filter(
activate(
Y),
N,
N)))
nats(
N) →
cons(
N,
n__nats(
n__s(
N)))
zprimes →
sieve(
nats(
s(
s(
0'))))
filter(
X1,
X2,
X3) →
n__filter(
X1,
X2,
X3)
sieve(
X) →
n__sieve(
X)
nats(
X) →
n__nats(
X)
s(
X) →
n__s(
X)
activate(
n__filter(
X1,
X2,
X3)) →
filter(
activate(
X1),
activate(
X2),
activate(
X3))
activate(
n__sieve(
X)) →
sieve(
activate(
X))
activate(
n__nats(
X)) →
nats(
activate(
X))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
X) →
XTypes:
filter :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
cons :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
0' :: cons:0':n__filter:n__sieve:n__s:n__nats
n__filter :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
activate :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
s :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
sieve :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
n__sieve :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
nats :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
n__nats :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
n__s :: cons:0':n__filter:n__sieve:n__s:n__nats → cons:0':n__filter:n__sieve:n__s:n__nats
zprimes :: cons:0':n__filter:n__sieve:n__s:n__nats
hole_cons:0':n__filter:n__sieve:n__s:n__nats1_0 :: cons:0':n__filter:n__sieve:n__s:n__nats
gen_cons:0':n__filter:n__sieve:n__s:n__nats2_0 :: Nat → cons:0':n__filter:n__sieve:n__s:n__nats
Generator Equations:
gen_cons:0':n__filter:n__sieve:n__s:n__nats2_0(0) ⇔ 0'
gen_cons:0':n__filter:n__sieve:n__s:n__nats2_0(+(x, 1)) ⇔ cons(0', gen_cons:0':n__filter:n__sieve:n__s:n__nats2_0(x))
No more defined symbols left to analyse.